Search results

1 – 2 of 2
Article
Publication date: 6 August 2010

Praveen Ailawalia, Sunit Kumar and Devinder Pathania

The purpose of this paper is to study the deformation of a rotating generalized thermoelastic medium with two temperatures under hydrostatic initial stress subjected to different…

Abstract

Purpose

The purpose of this paper is to study the deformation of a rotating generalized thermoelastic medium with two temperatures under hydrostatic initial stress subjected to different types of sources.

Design/methodology/approach

The methodology applied here is the use of integral transforms to obtain the components of displacement, force stress, conductive temperature and temperature distribution in Laplace and Fourier domain. The general solution obtained is applied to a specific problem of a half‐space subjected to concentrated force, uniformly distributed force and a moving source. These components are then obtained in the physical domain by applying a numerical inversion method. Some particular cases are also discussed in the context of the problem. The results obtained are also presented graphically to show the effect of rotation and gravity.

Findings

The variations of all the quantities and for all the mediums are similar for concentrated force and distributed forces applied along the free surface of the solid. The values of these quantities are very close to each other for GTES and GTESWG. Deformation of a body depends on the nature of force applied as well as the type of boundary conditions. The variations of all the quantities are more uniform in nature when a force of constant magnitude moves along the surface of solid with some velocity.

Originality/value

Such types of problems in rotating media will find great applications in many dynamical systems and industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

Rajneesh Kumar, Kulwinder Singh and Devinder Pathania

The purpose of this paper is to investigate a two dimensional problem in magneto-micropolar thermoelastic half-space with fractional order derivative in the presence of combined…

Abstract

Purpose

The purpose of this paper is to investigate a two dimensional problem in magneto-micropolar thermoelastic half-space with fractional order derivative in the presence of combined effects of hall current and rotation subjected to ramp-type heating.

Design/methodology/approach

The fractional order theory of thermoelasticity with one relaxation time derived by Sherief et al. (2010) has been used to investigate the problem. Laplace and Fourier transform technique has been used to solve the resulting non-dimensional coupled field equations to obtain displacement, stress components and temperature distribution. A numerical inversion technique has been applied to obtain the solution in the physical domain.

Findings

Numerical computed results of all the considered variables have been shown graphically to depict the combined effect of hall current and rotation. Some particular cases of interest are also deduced from the present study.

Originality/value

Comparison are made in the presence and absence of hall current and rotation in a magneto-micropolar thermoelastic solid with fractional order derivative.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 2 of 2